
PERWARE 2004

1

AmbientDB: P2P Data Management Middleware for Ambient Intelligence

Willem Fontijn
Philips Research

willem.fontijn@philips.com

Peter Boncz
CWI

boncz@cwi.nl

Abstract
The future generation of consumer electronics devices is
envisioned to provide automatic cooperation between
devices and run applications that are sensitive to people's
likings, personalized to their requirements, anticipatory of
their behavior and responsive to their presence. We see
this ‘Ambient Intelligence’ as a key feature of future
pervasive computing. We focus here on one of the
challenges in realizing this vision: information
management. This entails integrating, querying,
synchronizing and evolving structured data, on a
heterogeneous and ad-hoc collection of (mobile) devices.
Rather than hard-coding data management functionality
in each individual application, we argue for adding high-
level data management functionalities to the distributed
middleware layer. Our AmbientDB P2P database
management system addresses this by providing a global
database abstraction over an ad-hoc network of
heterogeneous peers.

1. Introduction

Future generations of consumer electronic devices will
make computing power and connectivity omnipresent, yet
hidden from the users view. This pervasive computing
infrastructure will be used to create an environment that
anticipates users wishes instead of just responding to
direct commands. The aim is to improve quality of life by
creating the desired atmosphere and functionality via
personalized, interconnected systems and services. This
vision, called Ambient Intelligence (AmI), is the focal
point of much ongoing research [1]. The ‘Ambient’ part of
AmI refers to the unobtrusiveness of the technology, both
physically, by embedding it in the environment, and
functionally, by making user interaction mostly implicit.
The latter will entail, for instance, habit watching [3]. The
‘ Intelligence’ part of AmI refers to the way the system
integrates and relates the data from a wide variety of
sources to create the perception of intelligence. The
sources range from simple sensor nodes to Personal Video
Recorders (PVRs) with sophisticated preference-based
meta data. Perceived intelligence implies that the AmI

system has to present to the user a unified and consistent
view irrespective of the context and location of the user or
the type of interaction. In an ad-hoc mobile environment,
this requires novel synchronization procedures,
transparent to the user [4].
The Connected Home [5] may be seen as a first step
towards AmI. Devices contain their own embedded
DBMS, and operate in isolation below the network layer
(see Fig.1a). If one device requires information located on
another device it will first have to find the latter device
and query it for the information. When the complexity of
the network increases, i.e. more and more diverse devices
are introduced, the increasing number of possible
combinations will make it hard to create robust
applications. Also, the performance of such a system will
degrade rapidly. This could be countered by pre-emptive
data aggregation on resource-rich central servers, but this
has multiple drawbacks. It creates mounting overhead as
the complexity increases, implies that certain functionality
is available only when in range of a server and makes the
system vulnerable to point failures. Finally, it is
questionable from a marketing viewpoint whether
customers will buy an expensive home-server that just
improves the performance of other devices.
An alternative to the central server approach is to keep the
participating devices fully autonomous but cooperative. A
collection of such devices we call a Device Society. Each
device has its own responsibility to deliver certain
functionality and the collection as a whole delivers the
environment to run high-level applications. In such a
system, most data is stored distributed and only integrated
at query time. Such distributed storage is robust and

Figure 1: Concept of (a) Connected Home, (b)
Ambient Intelligence environment

Application

DBMS

Application

DBMS

Application

DBMS

Application Application

(a)

(b)

Network Middleware

Hardware Hardware Hardware

DBMS

Hardware

DBMS

Hardware

DBMS

Hardware

AmbientDB

Application

Hardware

DBMS

Network Middleware

S
ta

ti
on

ar
y M

obile

PERWARE 2004

2

scalable but data management is not easy anymore.
In this paper we discuss a data management approach for
the latter strategy and present a prototype system. We first
illustrate its requirements using a scenario. In Section 2.2
a technical realization is presented.

1.1. Scenario: Music Playlist Generation

Consider the problem of playing music for a user that is
appropriate to his context and state irrespective of his
location. All music owned by this particular user, as well
as meta data describing this music is stored in a music
database distributed over one or more devices, such as
portable music (mp3) players, Smart Phone, PVR and/or
PC. To the user, this music collection should appear
conceptually as a single collection.
Three autonomous processes are active on this music
database. The first aims to improve the profile of the user.
The user can actively rate pieces of music, indicating
which songs he likes or dislikes. This explicit rating is
useful to establish a first draft profile but requires direct
user interaction. A more convenient way to improve the
profile is implicit rating. The system logs the reaction of
the user to different pieces of music in different contexts
and the logs are later processed to derive preferences of
the user in various contexts.
The second process aims to extend the music collection.
The profile of the user may be compared to profiles of
others, using collaborative filtering [3]. If one user likes
many songs another user likes, the first may also like
songs unknown to him that the second user likes.
The third process recommends music. Based on the
context, the user is offered a selection of his total music
collection. The context of the user may be derived from
many clues, e.g. ambient lighting, time of day and facial
expression. If the user leaves the house and takes a
portable music store with him, the system assists him in
selecting the music subset that will probably meet his
musical needs for the particular trip. While away, the
portable music device records implicit rating cues and
may pick up some additional pieces of music.
This system should not be static but able to evolve. If the
user buys a watch that senses his skin temperature, the
music recommender should discover that by combining
this new context information with other data, it could
gauge the mood of the user. From that moment on, the
recommender takes mood into account.

1.2. The idea: database middleware

Our challenge of managing a sea of evolving data sources
among possibly large and dynamic Device Societies
should be addressed in the middleware layer (see Fig. 1b).

Middleware services already provide the basic
infrastructure for application integration [9], integrating
not only data but also a wide variety of context sources
[6], providing applications with information about
network and device resources, and allowing applications
to reconfigure when conditions change [5]. While there
have been middleware systems with some data
management support [8][9] we aim to raise this to the
level of full DBMS functionality.
By putting such DBMS functionality inside or on top of
the middleware layer, all data sources are virtually
merged, shielding applications from the underlying
complexities. Applications release their queries and get
the results as if accessing a single database system. Events
such as the integration of new devices or data sources, or
failure of devices, and the creation of new data types, can
in great part be handled as schema evolution in this
database. Accepting queries in a high-level language that
describes what data an application needs instead of how to
exactly obtain its results, allows a query optimizer rather
than the application programmer to automatically find an
efficient solution for executing a query, taking into
account indexing structures, system and network load
conditions and concurrent requests. Also, this provides
data independence, meaning that the data representation
can change over time without this breaking the
applications using the data. These are the classic database
advantages that we are now able to bring into the
pervasive computing domain. Finally, this approach
enables evolutionary introduction of new functionality. By
supplementing middleware for the Connected Home with
DBMS functionality, we create a breeding ground for
more and more sophisticated and AmI applications.

2. AmbientDB: a P2P DBMS

The goal of our AmbientDB system [10] is to provide full
relational database functionality for standalone operation
in autonomous devices that may be mobile and disconnec-
ted for long periods of time, while enabling them to co-
operate in an ad-hoc way with (many) other AmbientDB
devices. Hence, our choice for P2P, as opposed to designs
that use a central server. AmbientDB uses ‘abstract’
tables, i.e. applications are ignorant of where data resides.
Internally, a table may be private to the node, or
distributed over many nodes in the network. The actual
content of a distributed table is formed by the union of
table partitions in all nodes that are connected at that time.

2.1. Key Functionalities

Since our work touches upon many sub-fields of database
research [7], we highlight the main differences.

PERWARE 2004

3

Distributed database technology presupposes that the
collection of participating sites and communication
topology is known a priori. AmbientDB does not.
Federated database technology, the current approach to
heterogeneous schema integration, focuses on statically
configured combinations of databases instead of ad-hoc
Device Societies. Mobile database technology generally
assumes that mobile nodes are (weaker) clients that
synchronize with a centralized database server over a
narrow channel. Again, AmbientDB does not. Finally,
P2P file sharing systems do support decentralized, ad-hoc
Device Societies, but allow only simple keyword text
search (as opposed to structured database queries).

2.1.1. Self Organization
P2P technologies are able to adapt to changes in the
environment and work without central planning. In order
to provide efficient indexed lookup into its distributed
database tables, AmbientDB makes use of Chord [11].
Chord is a Distributed Hash Table (DHT), a scalable P2P
data structure for sharing data among a potentially large
collection of nodes, allowing nodes to join and leave
without making the network unstable. It uniformly
distributes data over all nodes using a hash-function,
enabling efficient O(log(N)) data lookup. To improve
scalability in situations where some devices are resource-
poor, AmbientDB keeps devices out of Chord to prevent
overloading them with data they cannot store or with
queries they cannot handle. Upon connection, low-
resource nodes transfer their data to a resource-rich
neighbor that handles queries on behalf of them.

2.1.2. Query Processing
AmbientDB performs a three level query translation:
(1) abstract algebra: A user query is posed in the
“abstract global algebra” . This is a standard relational

query language, providing the basic operators for
selection, join, aggregation and sorting.
(2) concrete algebra: These are concrete strategies for
resolving the basic relational operators. Typically, each
abstract operator has multiple concrete variants. E.g.,
there is a broadcast-select, that executes a selection
operator on a distributed table by flooding the network
(broadcast) and collecting all matches. There is also a
variant that exploits a Chord DHT index, which may be
used if a global index on a table column was defined in
the schema. Thus, many different concrete plans may exist
for an ‘abstract’ query, and the query optimizer in
AmbientDB is used to select a good plan.
(3) dataflow algebra: A very small kernel of basic
operators is sufficient to implement the concrete algebra.
Each concrete operator is mapped onto a wave-plan that
consists of a graph of dataflow operators. Next to query
processing the dataflow operators provide functionality
for splitting and merging data streams.
We plan to augment AmbientDB with support for triggers,
such that applications can be alerted to interesting events
rather than poll the global database with queries [12].

2.1.3. Synchronization
The aim of traditional (distributed) database technology,
to provide strict consistency, is not appropriate for P2P
database systems. Algorithms, such as two-phase locking,
are too expensive for a large and sparsely connected
collection of nodes. Many applications do not need full
transactional consistency, but just a notion of final
convergence of updates. Also, applications often have
effective conflict resolution strategies that exploit
application-level semantics. Thus, the challenge for a P2P
DBMS is to provide a powerful formalism in which
applications can formulate synchronization and conflict
resolution strategies. Our first target is to support
applications that use rule-based synchronization expressed
in a prioritized set of database update queries.

2.1.4. Schema Integration & Evolution
As devices differ in functionality and make, their data
differs in semantics and form. We use table-view based
schema integration techniques [13] to map local schemata
to a global schema. AmbientDB itself does not address the
automatic construction of such mappings, but aims at
providing the basic functionality for applying, stacking,
sharing, evolving and propagating such mappings.
Providing support for schema evolution within one
schema, e.g. such that old devices can cooperate with
newer ones, is often forgotten. We foresee that a global
certifying entity keeps track of changes in the various sub-
schemas, maintaining bi-directional mappings between
versions. Schema deltas are certified such that one peer

Figure 2: Concept of AmbientDB. The application
on top issues a query to the AmbientDB layer that
is propagated (dashed line) to all connected peers.

The query result (solid line) is aggregated along
the query path and presented to the application.

The binary tree in the network layer represents the
network topology.

PERWARE 2004

4

may carry it to the next, without need for direct
communication with a centralized entity.

2.2. Scenario using P2P data management

The gist of our approach is that we believe that P2P data
management functionality will make it easier to construct
Ambient Intelligent applications. To illustrate how we see
that happen, let us go back to the problem of managing
and navigating music intelligently.
The schema created by the music player contains a LOG
table where per-user song play counts are kept (see
Fig. 3). This is a distributed table, which means that the
music application sees the union of all (overlapping)
horizontal fragments at all participating devices of that
moment as one big table. All devices maintain local play-
counts for each (artist,user) combination in this LOG
table. The schema specifies an index on LOG.artist, so
each LOG entry is replicated in a Chord DHT and
distributed over all nodes of the Internet domain, using the
Chord hashing scheme (see Fig. 3). This allows to quickly
locate users that played a particular artist.

2.2.1. Self Organization Example
The family music collection -- typically in the order of a
few thousands of songs -- is distributed among the Device
Society owned by family members. Some of these devices
may have access to the Internet. The music players with
embedded AmbientDBs form a self-organizing P2P
network, connecting the nodes in order to share all music
content in the "home domain", and a second -possibly
huge- P2P network consisting of all music players
reachable via the Internet, among which only the meta-

information is shared. The home domain may contain
some very low-resource devices in terms of CPU and
storage (e.g. phone) that are kept out of the Chord DHT.
In the Internet domain, the number of on-line nodes
maybe large and the number of songs huge.

2.2.2. Schema Evolution Example
In our scenario, the user buys a watch with integrated
body thermometer. This watch has Body Area Network
(BAN) functionality (e.g. Bluetooth) such that it can
communicate with the owner’s phone or mp3 player when
these are carried in his pocket. With the temperature meter
watch comes an AmbientDB schema update that e.g.
introduces a new TEMPERATURE table that stores
(timestamp, temperature) records, and a data propagation
profile with rules that specify the longevity of its records
and a propagation strategy. Additionally, on a certified
(vendor) site, the user community of the music player may
store a trigger update that specifies a (complex) rule that
derives a mood from the body temperature curve in
conjunction with other personal characteristics stemming
from other sources. When this mood indicates
appreciation for the current song, an automatic playlist
creation process is scheduled, aggregating songs similar to
the one currently being played (this query is described in
Section 2.2.4).
Note that schema updates may propagate in a P2P fashion
(from watch to phone, from phone to home PC) or from a
central Internet site, in any case though with a certifying
mechanism. Also, schema updates may depend on a
collection of sub-schema versions being present, such that
during the next visit to the central vendor site, when the
combination of music and temperature sub-schemas is
detected, the user is alerted to the possibility of installing
the "music-appreciation-trigger".

2.2.3. Update Propagation Example
The watch has a limited storage capacity, it can hold only
a few records. Its synchronization rules, however, make it
replicate temperature records to devices in the
neighborhood (e.g. your Smart Phone). When it arrives at
home, the Smart Phone then propagates these records to
the home PC, where a health-monitoring agent might be
running that periodically analyzes this log data using data
mining techniques. The propagation rules may include a
maximum lifetime that causes old records to be
automatically deleted after e.g. a number of weeks.

2.2.4. Query Processing Example
The music player generates intelligent playlists, either
because the user explicitly chooses an sample artist to
generate a similar playlist from, or implicitly when the
“music-appreciation-trigger” notices that you like an artist

Fig.3: Scenario for sharing music metadata
between many music players in the Internet

domain. The distributed table LOG holds artist
play-counts for each user. One can quickly find

users that play a certain artist using a Chord index.

Liz
Rob
Ann

U2
U2
blur

7
2
9

Liz
Rob
Ann

U2
U2
blur

7
2
9

Ann
Rob
Rob

U2
blur
rem

5
4
1

Ann
Rob
Rob

U2
blur
rem

5
4
1

Liz
Ann
Liz

blur
rem
rem

6
3
8

Liz
Ann
Liz

blur
rem
rem

6
3
8

Liz
Rob
Ann

U2
U2
U2

7
2
5

A
A
E

Liz
Rob
Ann

U2
U2
U2

7
2
5

A
A
E

Liz
Rob
Ann

U2
U2
U2

7
2
5

A
A
E

Ann
Rob
Liz

blur
blur
blur

9
4
6

A
E
C

Ann
Rob
Liz

blur
blur
blur

9
4
6

A
E
C

Ann
Rob
Liz

blur
blur
blur

9
4
6

A
E
C

Rob
Ann
Liz

rem
rem
rem

1
3
8

E
C
C

Rob
Ann
Liz

rem
rem
rem

1
3
8

E
C
C

Rob
Ann
Liz

rem
rem
rem

1
3
8

E
C
C

A

EC

cr eat e i ndex
I DX(user , ar t i st , count)
on LOG(ar t i st)

c r eat e i ndex
I DX(user , ar t i st , count)
on LOG(ar t i st)

c r eat e di st r i but ed t abl e
LOG(user , ar t i st , count , …)

cr eat e di st r i but ed t abl e
LOG(user , ar t i st , count , …)

Chord

other
fields..
other
fields..

other
fields..
other
fields..

other
fields..
other
fields..

Liz
Rob
Ann

U2
U2
blur

7
2
9

Ann
Rob
Rob

U2
blur
rem

5
4
1

Liz
Ann
Liz

blur
rem
rem

6
3
8

other
fields..

global table
Liz
Rob
Ann

U2
U2
blur

7
2
9

Ann
Rob
Rob

U2
blur
rem

5
4
1

Liz
Ann
Liz

blur
rem
rem

6
3
8

other
fields..

global table

Find(‘blur’) :=
hash(‘blur’)�D
chord_lookup(D)�E

Find(‘blur’) :=
hash(‘blur’)�D
chord_lookup(D)�E

PERWARE 2004

5

being played. The two database queries below express a
simple collaborative filtering method. The first query
computes a relevance of other users’ music taste from
their play-count of an sample artist. The second query
then computes a ranking by multiplying all artist play-
counts of all users by the user relevance, and summing this
per artist, returning a top-N.
We kept this example very simple for presentation
purposes, but one can easily refine it, e.g. by increasing
the granularity to songs (instead of artists) or making it
work with a weighted collection of samples instead of one.
The benefit is that for the application programmer, writing
this kind of data-intensive applications on large ad-hoc
networks is reduced to writing some relatively simple
database queries. Database indices and query optimization
then make sure that it runs efficiently without the
application programmer having to worry about it [10].

3. Current Status & Research Challenges

We hope to release a first version of AmbientDB early
next year. We have focused so far on distributed query
processing, and identified three functional levels that all
require further research. On the top level, we need more
experience with a wider variety of Ambient Intelligent
applications to see what exact requirements they impose
on a P2P DBMS. Also, if applications are to cooperate
seamlessly, they need to operate in a compatible semantic
framework. This is an "AI-hard" problem for the general
case. We do see possibilities when trusted and
standardized mappings are available. The second
functional level is P2P data management. While we have a
working query processor, it is likely that there are query
execution algorithms that exploit the P2P architecture
better. Also, loosely consistent or converging transactions
as well as a schema mapping infrastructure remain open
areas of research. The third functional level is P2P
networking. P2P overlay technology often exhibits
inefficient usage of physical resources, as these are

opaque on the TCP overlay level. This could be improved
by dynamic re-configuration of P2P networks, an
important middleware research issue [5]. Better adaptation
to device and network resources using e.g. slave- and
super-nodes could be ways forward here.

4. Conclusions

Transparent distributed data management is crucial to
Ambient Intelligent applications in Device Societies, and
the P2P approach with AmbientDB as middleware offers a
possible solution. It enables the creation of a high-level
application development interface that is flexible and
provides data independence, while taking the burden of
data management optimization in a dynamic and ad-hoc
distributed environment out of the hands of application
programmers. The ability of AmbientDB to cope with
adding devices and functionality dynamically provides for
an evolutionary path for the introduction of Ambient
Intelligence, thus alleviating one of the most prominent
problems from a systems and marketing point of view.

5. References

[1] www.philips.com/research/ami
[2] www.semiconductors.philips.com/connected_home
[3] D. Nichols. Implicit Rating and Filtering, Proc. DELOS
Workshop on Filtering and Collaborative Filtering, 1998.
[4] G. Montenegro. MNCRS: Industry Specifications for the
Mobile NC, IEEE Internet Computing, 1998.
[5] M. Roman, F. Kon, R. Campbell. Design and Implementa-
tion of Runtime Reflection in Communication Middleware: the
dynamicTAO Case. ICDCS Workshop on Middleware, 1999.
[6] A. Schmidt, M. Beigl, H.-W. Gellersen. There is more to
context than location. Proc. of the Intl. Workshop on Interactive
Applications of Mobile Computing, 1998.
[7] D. Kossmann. The state of the art in distributed query
processing. ACM Computing Surveys, 32(4), 2000.
[8] G. Picco, A. Murphy, G.-C. Roman. On Global Virtual
Data Structures. In: Process Coordination and Ubiquitous
Computing, D. Marinescu, C. Lee, CRC Press.
[9] J. Carter, A. Ranganathan, S. Susarla. Khazana: An
infrastructure for building distributed services. In Proc. Int.
Conf. on Distributed Computing Systems (ICDCS’98), 1998.
[10] P. Boncz, C. Treijtel. AmbientDB: relational query
processing in a P2P network. Proc. Workshop On Databases,
Information Systems and P2P Computing (at VLDB’03), 2003.
[11] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H.
Balakrishnan. Chord: A scalable peer-to-peer lookup protocol
for Internet applications. Proc. SIGCOMM Conf., 2001.
[12] J. Widom, S. Ceri: Active Database Systems: Triggers and
Rules For Advanced Database Processing. Morgan Kaufmann.
[13] A. Halevy: Answering queries using views: A survey.
VLDB Journal 10(4): 270-294, 2001.

% each r ecor d has t he speci al f i el d #nodei d
% t hat hol ds t he devi ce I D wher e i t i s st or ed

RELEVANT : = % quer y wi l l use Chor d i ndex
 SELECT user , SUM(pl aycount) AS r el evance,
 #nodei d AS si t e
 FROM LOG
 WHERE ar t i st = ‘ nor mal i zed ar t i st name’
 GROUP BY user
 ORDER BY r el evance DESCENDI NG LI MI T 5

SELECT L. ar t i st AS ar t i st ,
 sum(L. pl aycount * R. r el evance) AS scor e
FROM LOG L, RELEVANT R
WHERE L. user = R. user AND L. #nodei d = R. si t e
GROUP BY ar t i st
ORDER BY scor e DESCENDI NG LI MI T 25

